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Abstract We discuss O. Hesse’s conjecture for homogeneous polynomials and B.
I. Korenblum’s conjecture on algebras of harmonic functions from the standpoint
of nonlinear first-order PDE. Also, we extend a recent theorem of T. McKinley and
B. Shekhtman for homogeneous polynomial partial differential operators to a wider
class of linear PDE with entire coefficients.

1 Hesse’s Conjecture

In 1859, O. Hesse [5] conjectured that if a homogenous polynomial u of N > 1

variables has a vanishing Hessian
(

∂ 2u
∂x j∂xk

)N

j,k=1
, then the partial derivatives ∂u

∂xi
, j =

1, . . . ,N are linearly dependent. In other words, Hess u≡ 0⇔∇u := grad u : CN →
hyperplane. For example, let N = 2 and u(x,y) is a homogeneous C2-function of
degree of homogeneity k+1, such that Hess u= uxxuyy−u2

xy≡ 0. Let ux = f , uy = g,

f ,g are homogeneous of degree k. Then, fxgy− fygx = 0 implies fx
gx
=

fy
gy

:= λ , while

by homogeneity, x fx +y fy = k f and xgx +ygy = kg = 1
λ

x fx +
1
λ

y fy =
k
λ

f . So, f =
λg and fx = λxg+λgx. Hence, λx ≡ 0 and, similarly, λy ≡ 0. Thus, λ ≡ const = c,
ux = cuy and ∇u maps C2 into a line.

P. Gordan and M. Nöther [2] showed that Hesse’s conjuecture holds for N =
2,3,4 but is false for n ≥ 5 in view of the following example of a cubic in 5 vari-
ables: u(x1, . . . ,x5) = x1x4

4 + x2x4x5 + x3x2
5. Indeed, denoting D ju = ∂u

∂x j
, we have
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(D1u)(D3u)− (D2u)2 ≡ 0. Hence, the components of ∇u are algebraically depen-
dent, so Hess u≡ 0 and ∇u : C5→

{
x1x3− x2

2 = 0
}

– cf. [10] for further discussion.
Note: u also satisfies a linear PDE, D1D3 u−D2

2 u = 0. In other words, if we
denote by P(x1,x2,x3) = x1x3 − x2

2, a quadratic homogeneous polynomial, then
Gordan–Nöther quintick satisfies two equations: a nonlinear one, P(∇u) = 0; and a
linear one, P(D)(u) = 0. We shall return to this point later in the discussion — cf.
[10].

2 The Higher Ground: General Nonlinear First-Order PDE

Looking for the higher ground, one might ask whether if u, a holomorphic function,
satisfies a “purely” nonlinear equation F(∇u) = 0, with F : CN → C being an en-
tire, or a meromorphic function with no linear factors, then the choices for u to be
a global solution of such nonlinear equation are severely limited — e.g., perhaps
forcing u to be linear. The Gordan–Nöther example, though crashing such hopes
in general, is not overly satisfying since their u is a function of 5 variables while
F := x1x3− x2

2 is a function of only 3 variables so F vanishes on the 2-dimensional
linear subspace {(x4,x5)}. The following result is relevant to our discussion.

Theorem 1 (DK – [7]). If an entire function u solves the (eiconal) equation u2
x +

y2
y−1 = 0, then u is linear.

The proof was based on some elementary trick, thus missing the “correct,” much
more general, theorem.

Theorem 2 (J. Hemmati (Guerra) – [4]). If F : C2→ C is a meromorphic, purely
nonlinear (cf. above) function and u is a meromorphic in C2 solution of F (ux,uy) =
0, then u is a linear function.

Thus, in particular, if for a meromorphic in C2 function u, the gradient map, grad
u : C2 → V , maps C2 into an algebraic, nonlinear and irreducible variety V , u is a
linear function and the grad u is a constant map – cf. [4]. This is, of course, a far-
reaching generalization of Hesse’s conjecture for N = 2. We refer to the survey [6]
for recent extensions and generalizations of the Hemmati (Guerra) theorem.

Remark 1.

(i) Not only is Theorem 2 more general than its predecessor, Theorem 1, but
its proof is much shorter and more to the point. Namely, it is easy to check
[4] that the characteristics for F (ux,uy) are all straight lines. Also, ux,uy stay
constant on characteristics while nonlinearity implies that these characteris-
tic lines have different slopes. This yields multivaluedness of ux,uy at the
intersection points, thus implying that those functions have branching singu-
larities and, hence, cannot be meromorphic.
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(ii) Also, as another illustration of the failure of Hesse’s conjecture in higher
dimensions, Theorem 1 already fails in C3. The function z− ϕ(x + iy) :=
u(x,y,z) satisfies the eiconal in C3 for any entire function ϕ of one variable.
Moreover, in higher dimensions there are more and more opportunities for

entire solutions of the eiconal
N
∑
1

(
∂u
∂ z j

)2
= 1. Take in C5, for example, u =

ϕ (z1 + i z2)+ψ (z3 + i zu)+ z5 with entire ϕ,ψ , etc.
(iii) It is worth noticing that nonlinear equations in RN are even more rigid. For

example, as is well-known (cf. the references in [4, 7]), any C1 solution u

in RN of
N
∑
1

u2
x j
= 1 that is real-valued is linear. Indeed, the eiconal equation

describes the velocity of light moving along the normals to the level sur-
face with the constant speed (= 1). If the level surfaces of u have nontrivial
curvatures, the normals will intersect causing for the solution to become mul-
tivalued.

3 B. I. Korenblum’s Conjecture

What happens when a solution of a linear PDE generates an algebra of solutions?
Consider the following example.

Example 1. Let P =
N
∑
1

x2
j , x j ∈ R, so P(D) = ∆ . If ∆u = 0, and ∆u2 = 0, then

∆u2 = 2u∆u+2
N
∑
1

(
∂u
∂x j

)2
= 0, thus implying that u also satisfies a nonlinear equa-

tion (grad u)2 = 0, a similar equation to the eiconal. In the latter case, one can easily
check that for all k ∈ N, ∆

(
uk
)
= 0, thus u generates an algebra of harmonic func-

tions. For example, ∆u3 = u∆u2 + u2∆u+ 2u(grad u)2 = 0, etc. In two variables,
2
∑
1

(
∂u
∂x j

)2
= 0 is equivalent to either ∂u

∂x1
+ i ∂u

∂x2
= 0, or ∂u

∂x1
− i ∂u

∂x2
= 0, thus making

u either a holomorphic, or an anti-holomorphic function.

B. I. Korenblum [9] in the late 1970s conjectured that if u ∈C2(Ω), Ω ⊂ R3 is
a domain, and ∆u = ∆u2 = 0 (and then ∆uk = 0, k ∈ N), then, after an appropriate
rotation of coordinates, u must be either an analytic or an anti-analytic function
in two dimensions. Korenblum announced several proofs of the conjecture, all of
which contained gaps.

The reason was that, as stated, the conjecture is false and the intensely developing
theory of harmonic morphisms (cf., e. g., [1]) provides many counterexamples.

However, if we consider a global version of the conjecture, it might as well be
true.

The following unpublished result by the author verifies the conjecture in the cat-
egory of polynomials.
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Theorem 3 (DK, ‘92, unpublished). If u is a polynomial in R3 and ∆u = ∆u2 = 0,
then after an appropriate rotation of the coordinates, u must become an analytic or
an anti-analytic function in 2 dimensions.

The proof rests on the Lemma (DK, ‘92, unpublished), characterizing carriers of
singularities of harmonic functions in C3.

Lemma 1 ([8, Prop. 20.1]). Let ϕ = ϕ (z1,z2,z3) be a homogeneous polynomial of
degree m such that the variety Γ :=

{
z ∈ C3 : ϕ(z) = 0

}
is everywhere characteris-

tic (cf., e.g., [8, pp. 16, 53, 151] with respect to ∆ :=
3
∑
1

∂ 2

∂ z2
i
, i. e.,

3
∑
1

(
∂ϕ

∂ zi

)2
= 0 on

Γ . Then, up to a constant factor, either ϕ (z1,z2,z3) =

(
3
∑
1

α jz j

)m

, where α j ∈ C

are constants such that
3
∑
1

α2
j = 0, i.e., Γ is a characteristic (w.r.t. ∆ ) plane, or

ϕ (z1,z2,z3) =

(
3
∑
1

z2
j

)m
2

, and Γ is an isotropic cone.

For our purposes, we need the following obvious corollary.

Corollary 1. If ϕ (z1,z2,z3) is a homogeneous polynomial of degree m satisfy-

ing an “eiconal” equation
3
∑
1

(
∂ϕ

∂ zi

)2
= 0 in C3, then, up to a constant factor,

ϕ =

(
3
∑
1

α jz j

)m

,
3
∑
1

α2
1 = 0.

We shall sketch the proof of the lemma later. Now, let us finish the proof of the
theorem.

Let u = u0 + · · ·+ um, where u j are homogeneous harmonic polynomials of de-

gree j≤m. Then, clearly, the senior term um satisfies ∆u2
m = 0, hence

3
∑
1

(
∂um
∂ zi

)2
≡ 0

and, by Corollary 1, um =

(
3
∑
1

α jzi

)m

, with
3
∑
1

α2
j = 0. Rotating the coordinate sys-

tem in C3 we can assume without loss of generality that um = cm (z1 + i z2)
m, where

c is a constant. Now um−1um is harmonic as well as the second senior term in the
expansion of u2 and since u2

m is harmonic. Therefore, 0=∆ (um−1um) = um−1∆um+

um∆um−1+2 grad um−1 ·cm(1, i)(z1 + i z2)
m−1 = 2Cm

(
∂um−1

∂ z1
+ i ∂um−1

∂ z2

)
(z1 + i z2)

m−1.

Hence, ∂um−1
∂ z1

+i ∂um−1
∂ z2

= 0, yielding um−1 = cm−1 (z1 + i z2)
m−1+bzm−1

3 . But ∆um−1 =

b(m− 1)(m− 2)zm−3
3 = 0, yielding b = 0 and um−1 = cm−1 (z1 + i z2)

m−1. Contin-
uing this “backward” induction, we conclude that u = P(z1 + i z2), where P(u) is a
polynomial of degree m of one variable. Thus, it remains to indicate the proof of the
lemma.

Here are the main steps — cf. [8, Ch. 20, Sec. 2].

1. Solving ϕ(z) = 0 for one of the variables, say z3, we obtain on Γ = {ϕ(z) =
0}, z3 = ψ (z1,z2), whose ψ , as is easily-verified, satisfies an eiconal equation
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ψ j := ∂ϕ

∂ z j
, j = 1,2

)
, ψ2

1 +ψ2
2 =−1. ϕ is homogeneous of order m, so

3
∑
1

z jϕ j =

mϕ , and the implicit differentiation yields ψ j = −
ϕ j
ϕ3

, j = 1,2, so −z1ϕ3ψ1−
z2ϕ3ψ2 + z3ϕ3 = mϕ = 0 on Γ .

2. Substituting z3 = φ (z1,z2), we conclude that z1ψ1 + z2ψ2 = ψ , i.e., φ is homo-
geneous of order 1 function in 2 variables. Switching to polar coordinates r,θ we
can write φ = r f (θ) and it is easy to check that f satisfies an ODE ( f ′)2+ f 2 = 1.
Differentiating the latter equation we obtain a second-order ODE that factors eas-
ily producing two solutions: (I) f = ±1, in which case Γ is an isotropic cone{

3
∑
1

z2
j = 0

}
, or (II) f = β1 cosθ + β2 sinθ , β 2

1 + β 2
2 = 1, in which case Γ is a

plane.

Remarks:

(i) In view of the results on global solutions of the eiconal equations in 2D de-
scribed in Section 2, Korenblum’s conjecture holds for entire functions u in

C3 as well. Indeed, as before, ∆u2 = 0⇒
3
∑
1

(
∂u
∂ zi

)2
≡ 0, so on a level surface

{u = c}, writing z3 = ψ (z1,z2), we have (ψz1)
2 +(ψz2)

2 = −1, i.e., ψ is a
“global” solution of an eiconal, and hence must be linear. Therefore, all level
surfaces of u are planes, and after a rotation, we conclude that u= f (z1± i z2),
where f is an entire function of one variable.

(ii) With appropriate modifications one can show that an extended Korenblum’s
conjecture holds for polynomials in N variables but the statement must be
adjusted, and loses is esthetic appeal. For example, in C4, u = f (z1 + i z2)+
g(z3− i z4), where f ,g are analytic functions of one variable, satisfy ∆u =
∆u2 = · · · = ∆uk = · · · = 0. In higher dimensions there are even more op-
portunities to group the variables according to the same principle by taking

corresponding vectors (0, . . . ,α1,0, . . . ,0,αk,0, . . .), k ≤ N,
k
∑
1

α2
1 = 0 in the

isotropic cone Γ0 =

{
z :

N
∑
1

z2
j = 0

}
and applying functions of one variable to

dot products of these vectors with z= (z1, . . . ,zN). We leave it to the interested
reader to draw out the corresponding statements.

4 The T. McKinley–B. Shekhtman Conjecture

Recall that the Gordan–Nöther homogeneous cubic u in Section 1 satisfies two ho-
mogeneous equations: P(grad u)= 0 (first-order nonlinear equation), where P(z1, . . . ,z5)=
z1z3− z2

2, and a linear equation P(D)u = D1D3u−D2
2u = 0. In a recent elegant pa-

per [10], T. McKinley and B. Shekhtman suggested that this is part of a general
phenomenon.
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Conjecture 1 (McKinley–Shekhtman, 2017). Let P,u be homogeneous polynomials.
If P(grad u) = 0, then P(D)u = 0.

The conjecture is based on the general feeling, underscored in Section 2, that
global solutions of the first-order nonlinear PDE are quite special and scarce.

Example 2. As was shown in Section 3, a homogeneous polynomial u in C3 satis-

fying an “eiconal”
3
∑
1

(
∂u
∂ zi

)2
≡ 0, has a very special form c

(
3
∑
1

α jzi

)m

,
3
∑
1

α2
j = 0,

thus obviously satisfying ∆u = 0. We refer the reader to [10], where several special
cases of the above conjecture are verified.

Also in [10], the following weak converse to the M–S conjecture is proved.

Theorem 4 ([10]). Let P be a homogeneous polynomial while u is a polynomial. If
P(D)

[
f k
]
≡ 0 for all k ∈ N, then P(grad f )≡ 0.

The proof in [10] is based on clever algebraic manipulations. Theorem 4 unex-
pectedly has a nice implication in the approximation theory based on the following
result by A. Pinkus and B. Wajnryb [11].

Theorem 5 ([11]). Let f ∈ C [z1, . . . ,zn) be a polynomial, then the following are
equivalent:

(i) P( f ) := Span
{
[ f (·+b)]k : b ∈ CN ,k ∈ N

}
6= C [z1, . . . ,zN ].

(ii) ∃ polynomial P : P(D)
[

f k
]
= 0, for all k ∈ N

(iii) P( f ) 6= C
(
CN

)
with respect to the usual topology of convergence on com-

pact subsets of CN . Invoking this, a nice corollary to Theorem 4 is given in
[10].

Invoking this, a nice corollary to Theorem 4 is given in [10].

Corollary 2. Let f be a homogeneous polynomial. If P( f ) 6= C [z1, . . . ,zN ], then
there exists a homogeneous polynomial P : P(grad f ) ≡ 0, i.e., grad f : CN → CN

maps CN into an algebraic variety and, hence, Hess f ≡ 0.

For the proof one just takes a senior homogeneous part of a polynomial guaran-
teed by Theorem 5 and applies Theorem 4. However, applying the standard classical
result in PDE known as the Delassus–LeRoux theorem (cf. [8, pp. 22, 153], one can
substantially expand Theorem 4 in [10] and the proof becomes much more straight-
forward and transparent.

Theorem 6. Let P(D) := ∑
|α|≤m

aα(z)Dα , z = (z1, . . . ,zN), α = (α1, . . . ,αN), α j ∈

N∪ {0}, Dα =
(

∂

∂ z1

)α1
· · ·

(
∂

∂ zN

)αN
be a linear differential operator with entire

coefficients aα . Let u : CN → C be an entire function and P(D)
[
uk
]
= 0, for all

k in some arithmetic progression (e.g., k ∈ N, or k = 2n+ 1, n ∈ N, etc.). Then,

∑
|α|=m

aα(z)(grad u)α = ∑
|α|=m

aα(z)
(

∂u
∂ z1

)α1
· · ·

(
∂u

∂ zN

)αN
≡ 0. Thus, grad u maps CN

into an analytic hypersurface and, hence, Hess u≡ 0.
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(Theorem 4 follows at once from Theorem 6 when P = ∑
|α|=m

aα zα , a homoge-

neous polynomial, i.e., P(D) is a constant coefficients operator.)
The following result of Delassus–LeRoux is the key.

Lemma 2 (cf. [8, pp. 22, 153 and the references there]). Let Γ := {z : ϕ(z) = 0}
be a non-singular analytic hypersurface in CN and ν be a holomorphic solution of
P(D)ν = 0 in CN rΓ and ν is singular everywhere on Γ . Then, Γ is everywhere
characteristic with respect to P(D), i.e., ∑

|α|=m
aα(z)(grad ϕ)α ≡ 0 on Γ .

Remark 2. The Delassus–LeRoy theorem says simply that the singularities of solu-
tions of linear analytic PDE “propagate” through CN exclusively along characteris-
tic surfaces.

From Lemma 2, Theorem 6 follows almost at once.

Proof. First assume, for the sake of clarity, P(D)
[
uk
]
= 0, for all k ∈ N. For any

c∈C, in an open neighborhood where |u|< |c|we have f := 1
c−u = 1/c

∞

∑
0

uk

ck , and the

series converges. Hence, by the hypothesis, P(D)( f ) = 0 in that neighborhood, and
by analytic continuation everywhere in CN r{u = c}. By Lemma 2, Γc := {u = c}
must be everywhere characteristic with respect to P(D), i.e., ∑

|α|=m
aα(z)(gradu)α ≡

0 on Γc. But taking a continual family of Γc, c runs over an open set in C, we arrive
at the conclusion of the theorem.

The proof is easily modified to establish the theorem in full generality. Indeed, if
the hypothesis holds for k = n`+d, `,d ∈N, fixed, n = 1,2, . . . we can always write

fc :=
ud

c`−u`
=

∞

∑
n=0

ud

c`

(u
c

)n`
=

∞

∑
r=0

un`+d

c(n+n`)

and then proceed exactly as before.
Remarks:

(i) The classical (“calculus”) proof of the Delassus–LeRoux theorem can be
found in [3, Ch. 3]. A modern proof based on the elementary but far-reaching
extension of the Cauchy–Kovalevskaya theorem due to M. Zerner (1971) is in
[8, pp. 22, 153].

(ii) Instead of the family of functions
{ 1

u−c ,c ∈ C
}

, one can, of course, take di-
lations of any function f (u) with finitely many singularities on the circle of
convergence of its Taylor series. We leave the straightforward details of for-
mulating the corresponding result to the reader.
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